
什么是硅光子芯片呢?顾名思义,硅光子芯片就是利用硅光技术实现的一种基于硅光子学的低成本、高速的光通信技术,利用基于硅材料的CMOS微电子工艺实现光子器件的集成制备。被业界认为是是延续摩尔定律发展的技术之一。常见的互连线材料诸如铝、铜、碳纳米管等,而这些材质的互连线无疑都会遇到物理极限,而光互连则不然。硅光子技术采用的基础材料是玻璃。由于光对于玻璃来说是透明的,不会发生干扰现象,因此理论上可以通过在玻璃中集成光波导通路来传输信号,很适合于计算机内部和多核之间的大规模通信。在光互连中,最大的优势就是其超高速的传输速度,可使处理器内核之间的数据传输速度快100倍甚至更高,功率效率也非常高,因此被认为是新一代半导体技术。但是,作为下一代的半导体技术,其技术本身的起步却很早就开始了。早在上世纪九十年代,就提出了有关的一些概念,是为了在芯片发展到物理极限后取而代之,以延续摩尔定律。21世纪初开始,以Intel和IBM为首的企业与学术机构就开始重点发展硅芯片光学信号传输技术,期望有朝一日能用光通路取代芯片之间的数据电路。
目前来看,硅光芯片主要有三大优势:集成度高、成本下降潜力大、波导传输性能优异。首先,对于硅光芯片来说,其衬底依旧是目前最成熟的硅,但是芯片间的互连采用更加紧凑的光来完成,与传统方案相比,硅光子技术具有更高的集成度及更多的嵌入式功能,有利于提升芯片的集成度;其次,硅光子芯片的基础材料不需要传统先进芯片的GaAs/InP衬底,只需要硅基材料即可,一旦大规模生产,芯片成本将会得以大幅降低;最后,硅的禁带宽度为1.12eV,对应的光波长为1.1μm。因此,硅对于1.1-1.6μm的通信波段(典型波长1.31μm/1.55μm)是透明的,具有优异的波导传输特性。此外,硅的折射率高达3.42,与二氧化硅可形成较大的折射率差,确保硅波导可以具有较小的波导弯曲半径。
还有一点很值得注意,就是对于我国目前的半导体产业来说,硅光子芯片有它独有的优势——可以避开先进光刻机的掣肘。虽然它在制作流程和复杂程度上同传统芯片相似,但是它对于制程工艺的先进程度要求不高,不像传统芯片那样制程和能效的关联性巨大,一般百纳米级的工艺水平就能满足硅光子芯片的要求,这对于我国来说,120纳米左右的芯片是完全可以自主生产的,这样就可以绕开先进制程工艺的限制,在未来实现换道超车。
在未来硅光芯片的应用场景也十分广阔,特别是在智能驾驶和量子通信领域,硅光芯片都有这很大的潜力。先说在智能驾驶方面,目前在高速发展并且应用广发的车载激光雷达技术(LiDAR)各位车主估计已经见怪不怪了。车载激光雷达技术需要多路激光发射和接收,所以对于多路信号控制十分依赖,这恰恰是硅光芯片的优势,高度集成性和电光效应相位调谐能力使得它非常适宜在车载激光雷达上取代传统芯片得以应用。目前有MIT、OURS等多个团队推出基于硅光的车载激光雷达产品,随着无人驾驶、辅助驾驶应用逐步成熟,LiDAR有望成为硅光重要应用领域。
如果说在智能驾驶方面,硅光芯片的优势还不算明显,那在量子通信方面就是硅光芯片的主场了。众所周知,量子通信的前提是制造纠缠态的光子并对其操纵控制,这是对于光的把握是硅光芯片最擅长的领域,北大团队2018年3月在Science上发表了基于硅光的量子纠缠芯片的设计。在其中我们看到了量子通信在未来的军事、金融、数据中心加密等保密领域有着颠覆性的优势,而基于硅光的量子通信芯片有望成为未来重要的技术方案。就目前而言,硅光子技术商业化较为成熟的领域主要在于数据中心、高性能数据交换、长距离互联、5G基础设施等光连接领域,800G及以后硅光模块性价比较为突出。在可预见的未来,硅光芯片将支撑大型数据中心的高速信息传输,LightCounting预测2022年800G光模块会逐步起量,预计到2024年规模将超过400G光模块市场,达70亿美元。
说了这么多硅光子技术的优势,这项技术有没有缺点呢?当然世界上没有十全十美的事物,要是硅光子技术是完美的,那么我们现在大规模普及的就应该是硅光芯片了。那么对于硅光子技术,它最大的问题就在于硅光子芯片需要的器件多,而且目前仍有很多相关技术难题未解决:如陶瓷套管/插芯、光收发接口等组件技术目前尚未完全掌握。由此带来了种种问题,比如硅光芯片的制造工艺面临着自动化程度低、产业标准不统一;硅光芯片目前没有适合的封装方式,从光学封装角度来说,因为硅光芯片所采用的光的波长非常的小,跟光纤存在着不匹配的问题,与激光器也存在着同样的问题;不匹配的问题就会导致耦合损耗比较大,这是目前行业的一大痛点。
但是,随着先进制程工艺的发展空间越来越小,摩尔定律逐渐失效,越来越多的公司开始投入硅光芯片的研制工作,就比如文章开头提到的台积电和英特尔,虽然就目前的技术来看,指望硅光子技术彻底取代传统芯片不太可能,但是光硅子技术某些特定领域(比如文中提到的量子通信和智能驾驶)的潜力巨大,甚至会成为唯一的选择。
从赛微电子(300456) 证券研究报告里看到:2023年12月7日,谷歌推出原生多模态大模型Gemini1.0,是谷歌迄今为止规模最大、能力最强的大模型;同时推出全新的面向云端AI加速的TPU v5p,是谷歌迄今为止功能最强大、可扩展性最强的AI加速芯片。
1)谷歌推出最新 AI 加速芯片 TPU v5p,大范围部署 OCS(光电路交换机),其超级计算机通过 OCS 交换机可以轻松地动态重新配置芯片之间的连接,有助于避免出现问题并实时调整以提高性能。我们认为 OCS 交换机将来带数据中心网络架构的重大变革,从而降低功耗和成本。2)谷歌 OCS 交换机输入输出端口是两个光纤准直器阵列,当光通过光纤进入OCS 交换机后,会先后经过两个 2D MEMS 阵列,每个阵列含有 136 个平面镜,用于精确调节光的传播方向。MEMS 光开关是基于半导体微细加工技术构筑在半导体基片上的微镜,即将电、机械和光集成为一块芯片,可以完成对多路光波路由的任意切换。谷歌 OCS 交换机核心在于 MEMS 反射镜组件,我们预计 MEMS 光开关将迎来强劲需求。3)赛微电子在 MEMS 代工领域处于龙头地位,公司境外 MEMS 产线的硅光子芯片制造技术较为成熟,已具备工艺开发及小批量生产经验,已向欧美知名厂商长期供货,预计公司将在MEMS 光开关、硅光芯片等领域广泛布局和快速发展。这样的一个公告,应该说明硅光子技术应该突破了瓶颈,真正进入了商业化。
硅光子产品可以分为三个层级,分别是硅光器件、硅光芯片和硅光模块。硅光模块主要由硅光器件、驱动电路和光接口组成。硅光模块按功能可分为接收模块,发送模块,收发一体模块等类型。相较传统光模块,硅光模块具有传输速率大、集成度高、传输损耗低等优势,在通信互联系统中发挥着重要作用,随着大数据时代的到来,硅光模块市场前景广阔。
扫二维码用手机看